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Probability and Radical Behaviorism
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The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it
seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative
frequency interpretation of probability and its applicability to the data from the science of behavior as

supplied by cumulative records. Two examples of stochastic processes are given that may model the data
from cumulative records that result under conditions of continuous reinforcement and extinction, re-

spectively.
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Probability is a very important concept
within Skinner’s radical behaviorism
(Skinner, 1953). It is the probability of a
response that is supposed to be changed
as a result of a reinforcement (Skinner,
1957a). Nevertheless, it seems to me that
the concept is rather vague and needs to
be more explicitly defined; an ostensive
definition cannot do. A good summary
of various ways in which probability is
used in behavior analysis is supplied by
Johnson and Morris (1987).

Skinner may have borrowed the prob-
ability concept from physics and made it
a part of radical behaviorism. He might
have seen a useful analogy between the
emission of a particle when a radioactive
nucleus decays and the emission of a re-
sponse during operant behavior. Just as,
in the former case, there is a probability
for the emission of a particle, so, in the
latter case, there would be a probability
for a response to be emitted.

In The Behavior of Organisms (Skin-
ner, 1938), the term “probability” is not
found in the index. Instead, he states: “It
follow§ that the main datum to be mea-
sured in the study of the dynamic laws
of an operant is the length of time elaps-
Ing bet\gveen a response and the response
immediately preceding it or, in other
words, the rate of responding” (p. 58).
But, a few years later Skinner (1944) said:

The business of a science of behavior is
to predict response. This prediction is to
be achieved by evaluating the strength of
a response (the probability that it will

51

occur)” (p. 280). Then, in Schedules of
Reinforcement, Ferster and Skinner
(1957) stated: “Our basic datum is the
rate at which such a response is emitted
by a freely moving organism” (p. 7), and
a few sentences later: “Such a datum is
closely associated with the notion of
probability of action” (p. 7). Again, Skin-
ner (1957a) stated: “Probability of re-
sponding is a difficult datum” (p. 344),
and then he went on to appeal to fre-
quency of emission. In a subsection to
Verbal Behavior (Skinner, 1957b) enti-
tled “Probability and the Single In-
stance,” Skinner said: “Under laboratory
conditions probability of response is eas-
ily studied in an individual organism as
frequency of responding” (p. 28). But, a
couple of sentences later he said: “But we
need to move on from the study of fre-
quencies to a consideration of the prob-
ability of a single event” (p. 28). A few
pages back he had said: “Our basic datum
is not the occurrence of a given response
as such, but the probability that it will
occur at a given time” (p. 22). Finally,
Skinner (1966) made the following state-
ment: “Many investigators prefer to treat
rate of responding as a datum in its own
right. Eventually, however, the predic-
tion and control of behavior call for an
evaluation of the probability that a re-
sponse will be emitted” (p. 16).

It seems clear to me that Skinner was
trying to find a probability for the next
response in time. He believed that prob-
ability was to be inferred from the data,
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but that it was not the same as frequency
of responding. Yet, he did not arrive at
an exact relationship between the two.

In experiments on operant behavior the
data usually consist of a cumulative rec-
ord, what Skinner (1969) has referred to
as the “fact in the bag” (p. 84). The rate
of responding could be seen to vary as
the slope of that curve varied. This vari-
ation was considered an indication of
changes in the probability, to be found
somewhere in those curves and slopes,
for the single instance.

My purpose here is to set forth what I
think is the way to apply probability to
the data from the science of behavior,
specifically that part which is in the form
of cumulative records. One result will be
a possible solution to Skinner’s problem
of finding the relation between probabil-
ity of response and frequency of respond-
ing. I think that a complete probabilistic
treatment of these data would involve at
least the following five steps: first, to sup-
ply an unambiguous definition of prob-
ability; second, to show how probability
applies to the data which have been found
by that part of the science of behavior
which relies on the cumulative recorder;
third, to produce a mathematical model
for that data; fourth, to compare the
model with experimental results; and
fifth, to manipulate given probabilities
and then derive other probabilities from
them which constitute predictions of the
model and should in turn be compared
with the results of other experiments. No
complete treatment will be given here;
only a start is being made with the first
three points given above.

I will describe here a definition of prob-
ability based on relative frequency, which
I consider the only one to be scientifically
useful because it is quantitatively un-
ambiguous and directly related to mass
phenomena or repeatable physical events.
Because relative frequency probability is
already predominantly used in behavior
analysis (Johnson & Morris, 1987), in the
next section I will simply encourage the
continuance of that approach. Following
that, I will set forth my view of how a
connection can be made between prob-
ability and that part of the data from the
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science -of behavior that appears in the
form of cumulative records. The merits
of this connection will apply only to Skin-
ner’s use of probability as I have de-
scribed it above; no claim will be made
here as to other uses of probability in the
science of behavior generally. Next, I in-
troduce the time-dependent probability
distributions, which are called stochastic
processes, and their relevance to cumu-
lative records. Finally, I give two explicit
examples of stochastic processes that may
model the data from the simplest sched-
ules of reinforcement: continuous rein-
forcement and extinction.

PROBABILITY

The concept of probability in mathe-
matics and physics has a history extend-
ing over several centuries and has been,
perhaps, the most confused of all physical
concepts. Quantitative probability start-
ed in the 17th century with the analysis
of so-called games of chance, such as roll-
ing dice. To this day, however, there are
still at least three different meanings giv-
en to probability. Such a state of affairs
is rare because concepts will either sur-
vive as parts of viable theories or become
part of forgotten theories studied only as
history of science. I will only summarize
those three meanings. A more complete
review is given by Johnson and Morris
(1987). A fourth meaning of probability,
which I discount altogether, is given by
Halmos (1944) who says: “Probability is
a branch of mathematics™ (p. 493). All
three concepts of probability that I con-
sider apply to a set of possible outcomes
of an experiment. Rolling a die has six
possible outcomes; flipping a coin has
two. A number is then assigned to each
outcome and called its probability. The
meaning of that number is a basic dif-
ference between the various concepts of
probability.

The original meaning as formalized by
Laplace (1886) is called classical, a priori,
or even logical. It assigns to each simple
outcome an equal value based upon the
so-called principle of indifference, some-
thing like a uniform degree of ignorance
or a lack of better information. It would
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be better to call this approach possibility-
counting inasmuch as that is what is in-
volved; the main problem is to find all
the “equal” possibilities in the sense of
equally probable cases. But, defining
“probability” in terms of “‘equally prob-
able” certainly involves a vicious circle
and for that reason alone should be con-
sidered unacceptable. Nevertheless, con-
sider an example. With six possible faces
on a die and each face having equal prob-
ability, it is clear that each will have a
value of 1/6. But, it should be clear that
such numbers have no physical meaning
that could be used to compare with ex-
perimental data; it is only the arithmet-
ical result of counting the possible results
of an experiment.

It is important to make two further
points. First, there is a strong desire on
the part of some scientists to give nu-
merical meaning to a probability of single
events. Typical of this is the statement
of Kemble (1942): “I propose that single-
event probability—in particular, that type
of single-event probability commonly
designated as a priori—should be includ-
ed despite its nontestability in the list of
essential scientific concepts” (p. 16). I do
not think that nontestable, and thereby
unobservable, concepts would be useful
In a science of behavior where the facts
are directly observable. Second, attempts
have been made to connect these a priori
or logical probabilities with observable
frequencies via one of the laws of large
numbers. For example, Ballentine (1986)
says: “From the practical point of view,
this is the most important theorem in
probability theory, establishing the con-
nection between abstract probabilities
and frequencies in observable data” (p.
885). Yet, as far back as the year 1919,
von Mises (1981) had already reviewed
the import of that theorem, originally de-
nved by Bernoulli, and had shown that
such a connection involves a fallacy. It
1S not possible by means of a mathemat-
Ical theorem to change the physical in-
terpretation of a symbol used in a theory;
if P is a logical probability, it cannot be-
come arelative frequency; it must remain
Wwhat it was to begin with.

A second approach to probability is

called subjective (Keynes, 1973). In this
case the probability of each possibility is
determined by a wager-type method. This
number will then depend on the individ-
ual making the wager, which supposedly
would be a result of his state of knowl-
edge, which in turn would be a result,
perhaps, of introspection. Again it is not
possible to check these numbers for any
physical consequences. Because this case
involves a personal choice of numbers to
be picked by an individual, it might be
better considered as a problem to be
solved by a science of behavior. It may
be clear that a gambler is under the con-
trol of a VR schedule of reinforcement,
but the cause of the particular amount of
money put up at one particular bet is
certainly multiple, complicated, and dif-
ferent for each gambler. A probabilistic
model of cumulative records, it seems to
me, must have the probability in the rec-
ords, not in the observer, so that agree-
ment on measurements of probability can
result.

The third approach is called the rela-
tive frequency theory of probability. It
was first given a rigorous foundation by
von Mises (1964) starting around 1919.
It was he who introduced the concept of
a label, or sample, space for the set of
possibilities. The important difference
from other approaches is the assumed
existence in reality, or at least concep-
tually, of an indefinitely long sequence of
repetitions of an experiment. The result-
ing denumerably infinite sequence of re-
sults, each one an element from the sam-
ple space, is called the collective. Without
such a collective von Mises refuses to
assign a probability. In the case of a die
the sample space is: {1, 2, 3, 4, 5, 6}. A
sequence of those integers will constitute
a collective for the experiment of tossing
a die and might look like: [6, 3, 3, 1, 5,
6, 2, 4, - - -]. The probability of each el-
ement of the sample space is defined by:
P, = lim N/N, the limiting value of the

N—-oo
ratio of the number of times a given el-
ement has appeared in the sequence to
the total number of experiments. It is as-
sumed that this limit exists; this is the
first postulate of the theory. I will not
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discuss the second postulate that requires
the collective to be a random sequence
(von Mises, 1964).

The relative frequency definition of
probability has been criticized (Williams,
1945) on at least two counts. First, it has
been criticized because it requires an in-
finite sequence that cannot, in reality, be
carried out. This criticism ignores the fact
that in mechanics the definition of in-
stantaneous velocity along one dimen-
sion is v = lim Av/At¢ and this also in-

ar—0

volves a limiting procedure that cannot
be carried out in practice. Second, it has
been criticized because the theory cannot
include within its domain of applicability
such uniquely phrased questions as: What
is the probability that there is a tenth
planet in the solar system? Because there
is only one solar system, there is no col-
lective and such a probability is without
meaning. Although such questions can be
posed in the other approaches, this is not
a weakness of the relative frequency the-
ory; it is its delimitation to repeatable or
mass phenomena. “Probability” is a form
of verbal response emitted under many
circumstances; but, within an experi-
mental science, such lay words must be-
come restricted in their usually vague
meaning. For example, mechanics has an
important concept called “power.” Yet
mechanics has never been considered in-
complete because it is not possible (and
would be considered absurd) to assign a
numerical value in watts to the power of
Congress or the President and thereby
resolve the important problem in polit-
ical science regarding which branch of
government is more powerful.

In conclusion, probability is not a
property of the single instance but of the
whole sequence. When a die is tossed we
may say that the probability to get, say,
a five is 1/6. That number is only about
the whole sequence of tosses, about oc-
currences of the five in the long run. After
some reflection it should become clear
that it could not be otherwise. A single
toss may produce a six; what then could
the 1/6 have indicated, prior to the toss,
about the coming event when we did not
actually get a five? Nothing.
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Once a collective has been defined and
a probability distribution assumed, the
mathematical theory consists of the tech-
niques whereby new probabilities are de-
duced from the ones given initially. For
example, from the distribution for single
tosses of the die one can find the prob-
ability distribution of two successive
tosses, such as two fives in a row. This is
similar to classical mechanics where the
initial positions and velocities of parti-
cles are assumed given (the initial con-
ditions) and then the theory predicts the
future values of those same quantities.

PROBABILITY AND BEHAVIOR

For centuries it has been a philosoph-
ical problem to decide whether human
actions were determined by causes or were
free and the result of free will. I agree
with Skinner that human (and animal)
behavior is determined or caused in a
lawful manner. However, I also think that
it is not possible, at least so far, to control
behavior sufficiently well that one can
predict the single instance. One cannot
make, for example, the predictive state-
ment: “At exactly 15 minutes and 36.7
seconds after entering this experimental
chamber this pigeon will be pressing this
key with its beak.” However, it may be
possible to say that at the selected time
there is a probability that the pigeon will
be again pressing the key during the next
instant of time. This would mean, in
terms of relative frequency probability,
that if the experiment were carried out
repeatedly over a period of many days
and under the same initial circumstances
within the same environment, there
would be some occasions when the key
was being pressed and others when it was
not. The fraction of occasions when it
was being pressed would constitute the
approximate value of the probability of
that type of response. I say approximate
only because the sequence would neces-
sarily be finite. It is, therefore, not ac-
curate to say ‘“probability of response”
because the probability is about the whole
class of responses. This class of responses
is defined as consisting of those responses
that occur in the instant after a given



PROBABILITY AND RADICAL BEHAVIORISM

length of time (such as 15 minutes and
36.7 seconds from the beginning of each
experiment) has elapsed. A preferable
term would be “operant probability.” The
operant would be the class of responses
as defined above.

Consider a large number of cumulative
records, each one consisting of the results
of one identical session or experiment,
and then form the following three group-
ings: first, the totality of all records; sec-
ond, those records from the total number
that have by time ¢ accumulated n re-
sponses or, graphically, those in which a
vertical line placed on the cumulative
record at time ¢ will have intersected the
record at the ordinate value »; third, those
from this second group which by time ¢
+ At have a total of n + 1 responses or,
graphically, those in which a vertical line
placed at time ¢ + At on the cumulative
record will have intersected the record at
the ordinate value n + 1. The ratio of
the second group to the first is P,(¢), the
probability that n responses have oc-
curred by time ¢, whereas the ratio of the
third to the second group is P, (¢, ¢ + Ab),
the transition probability that given 7 re-
sponses by time ¢ there will be n + 1
responses by time ¢t + At. It is this latter
probability that I believe Skinner was
trying to identify; it is the probability of
the next response after n responses have
already been emitted. This probability is
a relative frequency amongst repeatable
€xperiments as they have been devel-
oping up to some given, common value
of phq elapsed time as measured from
their individual starting points. Rate of
Treésponse, on the other hand, is a ratio of
résponses to time interval and has units
of inverse time and therefore is not a
probability; a relative frequency must be
a ratio of two things of the same type.
Further on I will show that a connection
can be found between transition proba-
bility and response rate.

To prepare the way for a mathematical
treatment of probability it is useful to
ﬁrs! Introduce the concept of a random
variable. The purpose is to introduce
points that are real numbers instead of
the generally abstract points of the sam-
ple space. For example, flipping a coin
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has the sample space {heads, tails} or {H,
T}. Itis more convenient to identify heads
with 1 and tails with 0, or any other pair
of integers. The same could be said about
pressing a key; the sample space consists
of the two points: to-press and not-to-
press. It is more convenient to identify
to-press with the integer 1 and not-to-
press with the integer 0. A random vari-
able is defined as a real-valued function
with the sample space as its domain. The
values of the variable, therefore, have at-
tached to them a probability inasmuch
as each point of the sample space has a
probability. The values of the random
variable occur with a certain probability.
This explains why the name “random”
is used. If, as is the case with a die, the
sample space already consists of real
numbers, then one can invoke the iden-
tity function. In this way it is always safe
to talk about the values of a random vari-
able, knowing they are always real num-
bers. The set of values a random variable
may take is called the state space.

STOCHASTIC PROCESSES

A probability distribution is the as-
signment of a numerical probability to
each point of the sample space. The same
can be said for the values taken by a ran-
dom variable in the state space. I con-
sider only discrete sample and state spac-
es. I have shown that the probability of
a specific behavior, such as pressing a
key, depends on time. A family of ran-
dom variables X(f) depending upon a
continuous parameter ¢, in this case the
time, is called a stochastic process. If all
the random variables belonging to the
family are identically distributed, then the
continuous time dependence is irrele-
vant. If they should instead be totally in-
dependent of each other, the mathemat-
ical situation would become unwieldy, as
well as too general to be interesting or
applicable. Therefore, there will always
be assumed some kind of dependence
amongst the random variables.

It is a stochastic process that I believe
models the data produced by those op-
erant behavior experiments that use the
cumulative recorder. In such an experi-
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ment, the data will form a cumulative
record that consists of a graph of the total
number of pressing responses plotted
along the ordinate versus the time along
the abscissa. In terms of relative fre-
quency probability, I consider the total
number of responses emitted up to a time
t to be a stochastic process N(¢). The re-
sults of a given experiment over some
interval of time will constitute a single
cumulative record; this is a realization of
the stochastic process and is called a sam-
ple function. The set of all the cumulative
records resulting from the indefinite rep-
etition of an experiment constitutes the
stochastic process; the probability, as I
illustrated in the previous section, is a
property of the whole set, not of a single
record.

The state space over which N(¢) takes
values is the set of nonnegative integers;
the sample functions will be monotonic,
increasing step-functions of the time. The
probability distributions must satisfy:
P{N(0) = 0} = 1 and P{N(t) < N(t")} =
0 whenever ¢’ < t. The transition prob-
ability, P,(t, t + Af), will depend on At
and will be considered meaningful only
to the first order in Az. For this reason it
is also called the infinitesimal transition
probability. It is also convenient to in-
troduce the transition probability den-
sity, which is the limit of the ratio P,(¢,
t + At)/At, as At — 0. Attached to the
transition probability is the transition
random variable AN(f) = N(t + Ar) —
N(#), whose state space will consist of only
the two integers 1 and 0, corresponding
to “press” and “no-press,” respectively.

As with any experiment in science, the
results of an operant experiment must be
reproducible when carried out under the
same circumstances. Nevertheless, it is
doubtful that such cumulative records if
placed on top of each other would co-
incide point for point. Instead, the in-
dividual records are unified and related
when one considers them as sample func-
tions of a single stochastic process.

I think that this mathematical model
of the data contained in the cumulative
records of an operant experiment may
again make these records important.
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Skinner (1976) has decried their scarcity
in articles on operant research, whereas
Zeiler (1984) has called schedules of re-
inforcement “the sleeping giant.” Killeen
(1985) has commented on their unwiel-
diness and makes the interesting remark
that if cumulative records are smoothed
out, as Skinner suggests, they become
more complex because there are more of
them to deal with, infinitely more. What
might be needed is a way to give them
unity through mathematical form so that
they can be meaningfully manipulated,
just as it became possible to do with the
data from physics experiments during the
17th century. However, it should be very
clear that this mathematics is not being
used to model hypothetical, internal
causes of behavior, only the actual, di-
rectly observable data.

With the above model that I have sug-
gested, one can keep the step-ladder shape
of the cumulative records without
smoothing them out. In fact, any refer-
ence to the “slope” of a cumulative rec-
ord cannot be strictly meaningful as these
curves have slopes that only take values
of zero or infinity; such records have only
average slopes one might produce by
“eyeballing” with a ruler. Smoothness
may instead be found in the expectation
E[N(t)] of the stochastic process N(t). The
expectation can be a differentiable func-
tion of the time, having a well-defined
and continuously varying slope at every
point in time. In the following section I
give two examples.

EXAMPLES
Continuous Reinforcement

I will give a physically intuitive deri-
vation of the well-known Poisson sto-
chastic process first. This may be the way
to characterize a pigeon’s key-pressing
under a schedule of continuous reinforce-
ment. As I said in the previous section,
the family of probability distributions for
the stochastic process N(f) must have
some degree of interdependence; this will
appear through the use of a transition
probability. In the present case the basic
starting equations are:
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P,..(t+ At) = P,()P,(t, t + Ar)
+ Poi(t)
[1 =Pyt t+ AD)],
nz0,

Pyt + Af) = Py(t)Py(t, t + AD),

1)
2

P,(t, t + At) = rAt, 3)

where I am using the definition
P,(t) = P{N() = n}, 4)

and r is a constant parameter. Equations
1, 2, and 3 are accurate to the first order
in At.

An intuitive explanation of the results
of these equations follows. Equation 1
states that the probability for n + 1 re-
sponses by time ¢ + At, the term of the
left-hand side of the equation, is the sum
of two contributions that constitute the
two terms of the right-hand side of the
equation. The first term consists of the
product of the probability that »n re-
sponses have occurred by time ¢ times
the transition probability that a response
occurs during the following interval At;
whereas the second term is a product of
the probability that by time ¢ already n
+ 1 responses have occurred times the
transition probability that no response
occurs during the following time interval
At. There are only two contributions and
Justtwo terms on the right of the equation
because it is assumed that over a short
enough interval of time At there is a neg-
ligible transition probability involving the
emission of two or more responses.
Equat!on 2, the only case not covered by
Equation 1, states that the probability for
no response by time ¢ + At is the product
of the probability that no responses have
occurred by time ¢ times the transition
probability that no response occurs dur-
Ing the following interval Az. Equation 3
1s the basic assumption specific to this
process; it states that the transition prob-
ability is independent of both the state 7
and the time ¢ since the start of the ex-
periment and is directly proportional only
to the small interval of time At.

Substituting from Equation 3 into
Equation 2, rearranging, and going to the
limit as At — O results in the differential
equation

dPy(t)/dt = —rPy(t). %)

Doing the same thing with Equation 1
results in the differential-difference equa-
tion
dP,.(tydt = t[P,(t) — P,..(t)]. (6)
The solution to Equation 5 is
Py(t) = exp(—ri). @)

And, by induction on n, one gets from
Equation 6 and Equation 7 the complete
solution

P,(®) = [(r1)*/n!] exp(—r?). 8)

Using Equation 8 one can calculate the
expected value of N(¢)

E[N@®)] = D nP,(t) = 1t.

n=0

®

One can see that the expected value is a
smooth function of time, and its first de-
rivative, the slope, is

dE[N@))/dt =r. (10)

This shows that even though the sample
functions do not have a smooth slope,
the expected value does have one. In this
case the slope is constant, given by r. The
simplicity of the result presented in
Equation 9 may be misleading because it
seems to show that the expected number
of responses is always equal to the prod-
uct of a response rate r and the time ¢. It
must be kept in mind, however, that r,
as introduced above in Equation 3, is a
transition probability density and de-
fined at each point in time; it is only be-
cause L took it, in this case, to be inde-
pendent of time that it turns out to be
equal to the expected response rate. In
the next section the results will be quite
different.

It is now possible to find the relation-
ship that exists, at least for this process,
between the probability of the next re-
sponse and the response rate. Equation
10 gives us the expected response rate as
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r. Equation 3 shows that the infinitesimal
transition probability is rAt, or that the
transition probability density is r. There-
fore, it is the transition probability den-
sity that is equal to the expected response
rate. This is the connection that Skinner
may have been searching for, with the
qualifications that: (1) Instead of an av-
erage response rate from “eyeballing” a
single segment of a cumulative record, it
is an instantaneous, expected response
rate that is required; and (2) instead of a
probability of response, it is a transition
probability density that is required. All
of this results not from one record but
from the records of an indefinite repeti-
tion of identically prepared experiments.
It is a credit to Skinner’s great intuition,
no doubt in part due to his close and long-
time involvement with the directly ob-
servable facts of experiments resulting in
large numbers of cumulative records, that
he insisted on probability being a pri-
mary concept and that it be related to
response rate.

The distribution in Equation 8 can be
used to make a prediction on the distri-
bution of interresponse times. Let Z, be
the time interval from the start of the
experiment to the first response. Then Z,
is a random variable and we have

PZ, <t)y=1—-PZ >t)=1— Py2)
=1 — exp(—r?). (11)

Therefore, Z, has a probability density
given by

dP(Z, < t)/dt = r exp(—r1t). (12)

It can be shown by induction (Bhat, 1984)
that the interresponse time Z, between
the (n — 1)th and the nth responses is
distributed according to the same expo-
nential law of Equation 12,

dP(Z, < v)/dt = r exp(—r11). (13)

This is a good example of what one does
in the theory of probability. From the
distributions for N(¢) I have been able to
find the distributions for Z,. The ex-
pected value of Z, is given by

EBJ=Jxﬂnum—m=lma@

Because Equations 13 and 14 show that
all Z, are equally distributed with the

same mean value 1/r, it is then possible,
in this case, to find from a single sample
function an approximate value for the
parameter r.

Extinction

In the previous case, r was taken to be
a constant and the expected value of N(¢)
had a graph with a fixed slope. Extinction
records show a diminishing average slope,
becoming flat as no further responses are
emitted due to the lack of reinforcement.
I think a good model for such data would
be a stochastic process again resulting
from Equations 1 and 2, but where the
transition probability is given by

Pt t + At) = s()At (15)

instead of by Equation 3. Now the tran-
sition probability does depend upon the
time ¢ since the start of the experiment
but is still independent of the state n.
What I think is a good choice for the
function s(¢) is given by

s(t) = Qb/(t + b)?, (16)

which contains the two parameters Q
and b.

Asin the previous subsection, it is pos-
sible to solve the differential-difference
equation that results from introducing
Equation 16 in Equations 1 and 2. The
solution, P,(?), is given by

P,(t) = (Q/n)[t/(t + b))
-exp[—Qt/(t + b)].

In this case the expectation will be
E[N()] = Qt/(t + b).

And the slope of the expectation is

dE[N@))/dt = Qb/(t + b)2. (19)

From Equation 19 one can again see that
the expectation has a smooth slope. A
comparison of Equations 9 and 18 shows
that for this example the expected num-
ber of responses is not a simple product
of a constant r times the time . A com-
parison of Equations 16 and 19, however,
shows that again in this case the expected
response rate is equal to the transition
probability density. The interpretation of
the parameters Q and b can also be found.
The asymptotic value of the expectation

)

(18)
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as t » oo is found from Equation 18 to
be Q. Therefore, Q is the expected value
of the total number of responses emitted
during the process of extinction. One
might be tempted to call this number the
reflex reserve, a term once used by Skin-
ner (1938). The initial slope (at ¢ = 0) of
the expectation is Q/b. This can be in-
terpreted as the constant slope of the ex-
pected value of N(¢), which existed while
on continuous reinforcement just before
extinction began. One can also interpret
b as the time it would have taken to emit
Q responses under continuous reinforce-
ment if extinction had not been imposed.
One can look upon b as a ““time constant”
for nonexponential behavior.

I found an interesting remark by Skin-
ner (1979) in the second volume of his
autobiography. Referring to graduate
students trying to be mathematical about
data he says:

I offered them the smooth and reproducible ex-
tinction curve obtained after a brief exposure to
periodic reconditioning. (I performed one mathe-
matical analysis myself in a practical way. I plotted
the curve on a large vertical board and held a fine
gold chain against it. When I tilted the curve upside
down at just the right angle, it was covered by the
chain. In other words, the curve was a catenary.)
(p. 235)

As has been said above, the curves are
actually not smooth; trying to smooth
them makes them more intractable. The
reproducibility of the curves is only ap-
proximate, and in fact I consider them
to be the sample functions of a stochastic
process whose expected value is a smooth
function of time. Although the curve may
have looked like a catenary, it could: not
have been. Even if we accept that single
records appear smooth only on the av-
erage as a result of “eyeballing,” the cat-
enary does not have any asymptotes. Yet,
the initial slope, as extinction is started,
and the flat slope, as key-pressing ceases,
require two asymptotes for the expecta-
tion of these sample functions. It was
based on this that I decided on the form
of Equation 16 for s(¢) because this then
gives the expectation of Equation 18,
which does have two asymptotes. It is
quite possible that those early attempts
at a mathematical treatment of cumula-
tive records failed because probability did
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not enter into the interpretation; the rec-
ords were considered unique rather than
the sample functions of a stochastic pro-
cess.

CONCLUDING REMARKS

As Johnson and Morris (1987) have
shown, the concept of probability in be-
havior analysis varied, with no single
point of view. The first point I will make
is about the nature of probability. I con-
sider that in operant behavior, as in any
experimental science, probability is not
about a single response but about a class
of responses. Given that the predomi-
nant view of probability is that it is a
relative frequency (Johnson & Morris,
1987), I am first of all trying to encourage
that point of view. My main point, how-
ever, is with regard to which relative fre-
quency is to be called probability, and
then only in conjunction with cumulative
records. I have specifically intended to
find a consistent solution to Skinner’s use
of the term, including the relationship
between probability and response rate.

I take what has been called a molecular
view rather than a molar one. Behavior
is dynamic and requires a development
over time; the probability of behavior is
therefore time dependent. My suggestion
is that the data from experiments in op-
erant behavior, as found in cumulative
records, be modeled by a stochastic pro-
cess. The probability of an operant, such
as pressing a key, is the relative frequency
with which that type of response occurs
at time ¢ when an experiment is indefi-
nitely repeated. Each record is a sample
function, and the relative frequency of
the particular response to the total num-
ber of sample functions is the probability
of the operant, or class of responses, oc-
curing at time ¢. I believe that the sto-
chastic process gives a mathematical uni-
ty to the class of records of a given
schedule.

The model for a cumulative record is
then N(¢), the total number of responses
up to a given time, taken to be a family
of random variables or a stochastic pro-
cess. Then its expectation E[N(¢)] is a
smooth curve, and one might expect to
find that its slope will be close to what
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one would figure from “eyeballing” a sin-
gle record, especially when it comes to
trends in the slope, the so-called accel-
eration. We also get the result that the
expected response rate is equal to the
transition probability density at each
point in time.

I have only included models for two
schedules of reinforcement: continuous
reinforcement and extinction. These
models would now have to be compared
with experimental results. Also, it is nec-
essary to look at the more complex case
of intermittent reinforcement.
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